

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 ## Using The Versioning In Scripts - e.g. Powershell

Sometimes you will want to use the version number that is generated in a script, rather than replace in a predefined file. There are several output methods
that are used to do this.

Walkthrough - Using Versioning in a Docker Tag

This assumes that you have already created a version store and are using it to version elements such as the code. For simplicity none of that will be included in this guide and it will also be assumed that the version store will be incremented elsewhere (for example during the code build process). Therefore this walkthrough shows how to tag a docker image with the same version number that was just applied to the code.

Take this powershell script:

`dockerfile
docker build -t papi-api .
docker tag papi-api itseyreg.azurecr.io/papi-api:latest
`

One way to tag the version is by doing a replacement on the file and treating it as a text file like this:

`dockerfile
docker tag papi-api itseyreg.azurecr.io/papi-api:XXX-VERSION-XXX
`
This works but requires that you update your script file each time, and that is not the most convenient if running by hand, therefore we will look at an alternative approach that can be run inline to the file to take the correct version.

`dos
pliskytool.exe -Command=Passive -VersionSource=C:\temp\aversion.vstore -O=File
$verval = Get-Content plisky-version.txt
docker tag papi-api itseyreg.azurecr.io/papi-api:$verval
`

The passive mode of operation does no increment but simply opens the versioning store and retrieves the version number. The -O=file command then writes that to a file. This can then be read by your own utilities or in this case the Get-Content command in powershell.

Once the value is in a variable in powershell it can be used as normal.

 ## Plisky Tool Command Line reference

Command Line Options

Command line options are prefixed with -. They are postfixed with =.
e.g. -Command=CreateVersion

```plaintext
-Command  (-C)              Specify the Command that is to be run
-VersionSource  (-VS)       Specify an inititialisation string to a supported version source
-Increment                  Increment the version number during the command operation.
-Digits
-QuickValue  (-Q)           Provide a value for the versioning command.
-MinMatch                   Provide a file or list of minimatches to identify files to update.
-Root                       The root folder to recursivly search for files to update.
-DryRun                     If specified then no updates are made, but output is written to the logs.
-Debug                      Enables trace handling for debugging and additional logging.

Full Example Commandline:

PliskyTool.exe UpdateFiles -Root=c:src-VS=c:storepversioner.vstore -Increment -MM=”/*.csproj|StdFile,/.csproj|StdAssembly,*/*.csproj|StdInformational”

```

Commands

Create Version

Creates a new default version number

```plaintext
-Command=CreateVersion

Requires:
-VersionSource  (-VS)
```

`dos
pliskytool.exe -Command=CreateVersion -VersionSource=C:\temp\aversion.vstore
`

Will create a new version at 1.0.0.0 in the source specified by version source, this will be persisted with the default values of Fixed versioning. Therefore your version number will default to 1.0.0.0.

Passive

Passively reads the version number for use in scripts.

```plaintext
-Command=Passive

Requires:
-VersionSource  (-VS)  or -QuickValue (-Q)
```

`dos
pliskytool.exe -Command=Passive -VersionSource=C:\temp\aversion.vstore
pliskytool.exe -Command=Passive -VersionSource=C:\temp\aversion.vstore -O=File
`

Will load the version number into the tool then perform no action. This is only really used in conjuction with the -O output option to ensure that the version number is made available to a calling or alternative process.

Override
Overrides the values of version numbers at the point of next increment

```plaintext
-Command=Override

Requires:
-VersionSource  (-VS)  or -QuickValue (-Q)
```

`dos
pliskytool.exe -Command=Override -VersionSource=C:\temp\aversion.vstore -Q=.+.0.0
`

Will create a pending version that will be applied on the next increment. This will override changes that the default increments will perform applying a pattern. This is normally used for release versions, where versions do not follow the same pattern as build versions.

To alter the behaviour specify a new pattern separated by . therefore +.+.+.+ increments each of a four digit version number on the next increment.

+ = Increment this digit.
- = Decrement this digit.
nnnn = Any number of digits use this as the version number for this digit
abc = Any number of letters replaces the digit with this version (for named digits)

examples
1.0.0.0 => +… => 2.0.0.0
1.1.1.1 => +.+.+.+ => 2.2.2.2
1.1.1.1 => +.-+.- => 2.0.2.0
1.0.0.0 => +.0.alpha.0 => 2.0.alpha.0

Update Files
Overrides the values of version numbers at the point of next increment

```plaintext
-Command=UpdateFiles

Requires:
-VersionSource  (-VS)  or -QuickValue (-Q)
-Root

Optional:
-Increment
-DryRun
-MinMatch
```

`dos
pliskytool.exe -Command=Override -VersionSource=C:\temp\aversion.vstore -Root=C:\Build\Code\MyApp
`
Will optionally increment the version number specified by the source and then run through the directory specified by root and update any files that are matched by the minmatchers for the specified file types. There are a default set of minmatches in effect but they can be overriden.

To override a minmatch specify it using the -MM or -MinMatch command. This is a series of one or more strings separated by ;. If a single string is passed with no ; and if this refers to a file that exists on disk then this file will be parsed for MinMatches instead. The file format is as follows.

It is generally more convenient to specify the file and store it in your source repository than to configure all of the minmatches on the command line using the ; syntax.

`plaintext
<minmatch to the file>|<FileTypeToMatch>
`
Each line in the file adds a new minmatch.

`plaintext
**/MyApp/commonAssemblyInfo.cs|NetAssembly
**/MyApp/_Dependencies/CDSupport/readme.txt|TextFile
**/MyApp/AppDir/App.csproj|NetInformational
**/MyApp/AppDir/App.csproj|NetFile
**/MyApp/AppDir/App.csproj|Wix
**/_Dependencies/versioning.nuspec|Nuspec
**/MyApp/AppDir/AssemblyInfo.cs|StdAssembly
**/MyApp/AppDir/AssemblyInfo.cs|StdInformational
**/MyApp/AppDir/AssemblyInfo.cs|StdFile
`

The pipe separator separates the minmatch from the type of file that it is updating. Multiple file types can reside in the same file and therefore use the same minmatch.

Each file type has a rule to determine how to match versions, see (version matching reference)[vermatchref.md].

Full Eample Command Line:
`dos
'PliskyTool.exe UpdateFiles -Root=c:\src\ -VS=c:\store\pversioner.vstore -Increment -MM="**/*.csproj|StdFile,**/*.csproj|StdAssembly,**/*.csproj|StdInformational"
`
This will search the folder c:src for all .csproj files and attempt to add the .net standard versioninng for the three different file types to any csproj files that are
found. Note that for the std file type it will look inside the file and see whether it looks like a net std file or a framework one. Framework ones
will not be udpated.

 ##Versioning Storage Plugin Implementation

Version storage provides the persistence for versioning and can be used to use your own source of persistence if the default ones are not sufficient or if you wish
to use your own internal storage.

To implement versioning storage just create a class inheriting from VersionStorage.

```csharp
public abstract class VersionStorage {


protected string InitValue = null;
protected abstract void ActualPersist(CompleteVersion cv);
protected abstract CompleteVersion ActualLoad();

/// <summary>
/// Manages the storage of version numbers, allowing them to be saved and loaded.
/// </summary>
/// <param name=”initialisationValue”>An initialisation string for the underling system.</param>
public VersionStorage(string initialisationValue) {


InitValue = initialisationValue;




}
/// <summary>
/// Saves the complete version to the underlying storage system.  Where the underlying storage system faults then this error will be passed
/// up and it should be assumed that the save has not succeeded.
/// </summary>
/// <param name=”cv”>The CompleteVerison to save to the storage system.</param>
public void Persist(CompleteVersion cv) {


ActualPersist(cv);




}

/// <summary>
/// Gets the version from storage, if the storage is not initialised then will return a default version.  If the underlying storage throws
/// an error then this will be passed up to the caller.
/// </summary>
/// <returns>Version, or DefaultVersion where storage has not been used yet.</returns>
public CompleteVersion GetVersion() {


var loaded = ActualLoad();
if (loaded == null) {


loaded = CompleteVersion.GetDefault();




}
return loaded;




}




}

```

You should override ActualPersist and ActualLoad to implement your versioning storage.

 ## Versioning Overview

To get up and running really quickly but without much information there is the [Quick Start](quickstart.md) guide. The overview provides more detailed information and the reference provides reference information for when you are using the versioning tool.

Command Line Tool

Versioning can be referenced from the assembly in your own code or through the command line tool. The command line tool is designed to allow you to automate versioning tasks and be included in pipelines and DevOps automations.

The command line tool is pliskytool.exe and is used for most operations. See the [Command Line Reference](commandline.md) for full syntax and information.

Versioning.

[Quick Start](quickstart.md)

[Versioning Overview](Overview.md)

[Versioning Reference](Reference.md)

 ## Versioning Quick Start

Step 1
Create the storage file which contains the versioning number that you are going to use. The new file will default to 0.0.0.0 and a fixed behaviour scheme.

`dos
pliskytool.exe -Command=CreateVersion -VersionSource=C:\temp\myappname.vstore
`

Step 2
Configure your source repository with a text file describing which files you want to apply versioning to. This will contain a list of version minmatches.

Create a file like one below and save it as autoversion.txt in your repository.This is a set of minmatchers and you should match your code (for example the convention below has source code in a /src folder)

`plaintext
/src//CommonAssembly*.cs|NetAssembly
/src//CommonAssembly*.cs|NetAssembly
/src//CommonAssembly*.cs|NetAssembly
/src//CommonAssembly*.cs|NetFile
/src//CommonAssembly*.cs|NetInformational
/src//*.csproj|StdAssembly
/src//*.csproj|StdInformational
/src//*.txt|TextFile
`

Step 3
Increment the version number and apply the changes to your source files.

`dos
PliskyTool.exe UpdateFiles -Root=.\LibSrc\ -VS=\\server\versionFname.vstore -Increment -MM=AutoVersion.txt
`

Step 4

Investigate what else you can do - add step 3 to your build pipeline, include it in batch files, read the documentation etc.

 ## Plisky.Code Craft.

Plisky.Code Craft is a series of libraries, tools and practices all around writing better software. This module is a versioning tool designed to consistently apply and work with version numbers for Wintel stack code.

Versioning Reference.

Versioning Reference Types

.Net Framework identifiers
+ NetAssembly
+ NetFile
+ NetInfomrational

.Net Core Identifiers

	StdAssembly (Assembly Version)

	StdInformational (Informational Version)

	StdFile (File Version)

Other Identifiers

	TextFile (Plain text substitution for XXX-VERSION-XXX)

	Wix (Wix setup XML format)

	Nuspec (Nuget package format)

Behaviours

The versioning increment is based on the behaviour of the digit.

Fixed (0)
Fixed values do not change. They remain constant throughout a version increment.

MajorDeterminesVersionNumber (1)
Not Implemented.

DaysSinceDate (2)
DaysSinceDate will reflect the number of days that have elapsed since the BaseDate

DailyAutoIncrement (3)
DailyAutoIncrement will increment each time that the increment is called for the current build date. Therefore multiple builds on the same day will have incremental versions but the next day the number resets to zero.

AutoIncrementWithReset (4)
AutoIncrementWithReset will increment continually unless the next digit up has changed. It therefore behaves exactly like continual increment for the major version part. For the minor version part it will increment until the major changes then it will reset to zero. For the build the build will increment until the minor version changes. Finally for the revision it will increment until the build version changes.

AutoIncrementWithResetAny (5)

This will increment continually unless any of the higher order digits have changed. It therefore continually increments until a more significant digit changes then it resets to zero. Major digits will continually increment. Minor digits will continue to increment until the major changes. Build will continue to increment until either Major or Minor changes and finally the revision digit will continue to increment until any of Major / Minor or Build changes.

ContinualIncrement (6)

Continual increment will increment non stop until an overflow occurs. When an overflow occurs the digit is reset to 0.

WeeksSinceDate (7)
This will return the number of whole or partial weeks since the base date.

ReleaseName (8)

Will set this digit to be the release name as specified in the version. Release names can change during an increment but are not incremented or decremented as such. They are set to literal strings.

 ### Versioning Format Identifiers

NetAssembly, NetFile, NetInfomrational

Net framework based cs files looking for the corresponding attribute in the file to apply the version.

StdAssembly, StdInformational, StdFile

Net standard (csproj file) looking for properties in a property group to apply the version.

TextFile

Any file, looking for XXX-VERSION-XXX to replace with the version number.

Wix

Wix Setup file, looking for the version attribute. To update the version in the name too, use the text file version as well.

Nuspec

Nuget Package File format.

 ## Plisky.Code Craft. Versioning.

Plisky.Code Craft is a series of libraries, tools and practices all around writing better software. This module is a versioning tool designed to consistantly apply and work with version numbers for wintel stack code.

Markdown

Markdown is a lightweight and easy-to-use syntax for styling your writing. It includes conventions for

```markdown
Syntax highlighted code block

# Header 1
## Header 2
### Header 3


	Bulleted


	List





	Numbered


	List




Bold and _Italic_ and Code text

[Link](url) and ![Image](src)
```

For more details see [GitHub Flavored Markdown](https://guides.github.com/features/mastering-markdown/).

Jekyll Themes

Your Pages site will use the layout and styles from the Jekyll theme you have selected in your [repository settings](https://github.com/Itsey/Plisky.Versioning/settings). The name of this theme is saved in the Jekyll _config.yml configuration file.

Support or Contact

Having trouble with Pages? Check out our [documentation](https://docs.github.com/categories/github-pages-basics/) or [contact support](https://support.github.com/contact) and we’ll help you sort it out.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/plus.png

